A robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for rotating machinery fault diagnosis

被引:0
|
作者
Lin, Yanzhuo [1 ]
Wang, Yu [1 ]
Zhang, Mingquan [1 ]
Zhao, Ming [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Source-free unsupervised domain adaptation; Uncertainty measure; Transfer learning; Rotating machinery;
D O I
10.1016/j.ress.2024.110516
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Unsupervised domain adaptation (UDA), usually trained jointly with labeled source data and unlabeled target data, is widely used to address the problem of lack of labeled data for new operating conditions of rotating machinery. However, due to the expensive storage costs and growing concern about data privacy, source-domain data are often not available, leading to the inapplicability of UDA. How to perform domain adaptation in scenarios without access to the source data has become an urgent problem to be solved. To this end, we propose a robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for fault diagnosis. The method only requires the use of the lightweight source model and unlabeled target data, which provides a new possibility to deploy domain adaptation models on resource-limited devices with good protection of data privacy. Specifically, based on proposed channel-level and instance-level uncertainty measures, adaptive calibration of source-domain model knowledge and target-domain risk samples during domain transfer is performed to attenuate the effect of negative transfer. Then, entropy minimization and targetdomain diversity loss are introduced to redistribute the target samples and realize domain adaptation. Extensive cross-domain diagnostic experiments on two datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Novel Unsupervised Clustering and Domain Adaptation Framework for Rotating Machinery Fault Diagnosis
    Kim, Taewan
    Lee, Seungchul
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (09) : 9404 - 9412
  • [22] Source-Free Cluster Adaptation for Privacy-Preserving Machinery Fault Diagnosis
    Zhu, Mengliang
    Zeng, Xiangyu
    Liu, Jie
    Yang, Chaoying
    Zhou, Kaibo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [23] Adaptive centroid prototype-based domain adaptation for fault diagnosis of rotating machinery without source data
    Li, Qikang
    Tang, Baoping
    Deng, Lei
    Yang, Qichao
    Zhu, Peng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 251
  • [24] Confidence Score for Source-Free Unsupervised Domain Adaptation
    Lee, Jonghyun
    Jung, Dahuin
    Yim, Junho
    Yoon, Sungroh
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [25] Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation
    Litrico, Mattia
    Del Bue, Alessio
    Morerio, Pietro
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7640 - 7650
  • [26] Generation, division and training: A promising method for source-free unsupervised domain adaptation
    Tian, Qing
    Zhao, Mengna
    NEURAL NETWORKS, 2024, 172
  • [27] A dynamic collaborative adversarial domain adaptation network for unsupervised rotating machinery fault diagnosis
    Wang, Xin
    Jiang, Hongkai
    Mu, Mingzhe
    Dong, Yutong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 255
  • [28] Uncertainty-Guided Source-Free Domain Adaptation
    Roy, Subhankar
    Trapp, Martin
    Pilzer, Andrea
    Kannala, Juho
    Sebe, Nicu
    Ricci, Elisa
    Solin, Arno
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 537 - 555
  • [29] A novel sample selection approach based universal unsupervised domain adaptation for fault diagnosis of rotating machinery
    Lu, Biliang
    Zhang, Yingjie
    Liu, Zhaohua
    Wei, Hualiang
    Sun, Qingshuai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 240
  • [30] Multisource domain factorization network for cross-domain fault diagnosis of rotating machinery: An unsupervised multisource domain adaptation method
    Shi, Yaowei
    Deng, Aidong
    Ding, Xue
    Zhang, Shun
    Xu, Shuo
    Li, Jing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 164