Dynamic Coordination Engineering of Z-Scheme (FFV)2PdCl2/C3N4 Heterojunction for Superior Photocatalytic Hydrogen Evolution

被引:0
|
作者
Xu, Jiapeng [1 ]
Liu, Dong [1 ]
Li, Xinming [1 ]
Zhang, Xiaohu [2 ]
Zhang, Jing [1 ]
Zhang, Yuexing [3 ]
Peng, Tianyou [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Engn Res Ctr Organosilicon Cpds & Mat, Wuhan 430072, Peoples R China
[2] Huazhong Agr Univ, Coll Chem, Wuhan 430070, Peoples R China
[3] Dezhou Univ, Coll Chem & Chem Engn, Dezhou 253023, Peoples R China
来源
ADVANCED SUSTAINABLE SYSTEMS | 2025年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
dynamic coordination; Fluoflavin-Pd complex; g-C3N4; nanosheet; photocatalytic H-2 evolution reaction; Z-scheme heterojunction; GRAPHITIC CARBON NITRIDE; SINGLE-ATOM; NANOSHEETS; SYSTEMS;
D O I
10.1002/adsu.202400638
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Realizing highly efficient photocatalytic hydrogen evolution reaction (HER) is a key challenge. Herein, a (FFV)(2)PdCl2 complex is developed with dynamic coordination engineering between the Pd-II site and Fluoflavin (FFV) ligands, and couple it with graphite carbon nitride (g-C3N4) ultrathin nanosheets to construct a novel Z-scheme heterojunction ((FFV)(2)PdCl2/C3N4). The resultant heterojunction delivers a HER activity of 648 mu mol h(-1) under visible light (lambda >= 400 nm) illumination and an apparent quantum yield up to 40.1% at 400 nm, far superior to those g-C3N4-based catalysts reported previously. Mechanistic and theoretical studies reveal that the dynamic coordination between the Pd-II site and FFV ligands not only significantly accelerates the electron transfer from g-C3N4 to (FFV)(2)PdCl2 and then to the Pd-II sites via a Z-scheme mechanism, but also effectively maintain the efficacy and stability of the Pd-II active sties, and thus the (FFV)(2)PdCl2/C3N4 with a ultralow Pd-loading amount (ca. 0.1 wt.%) exhibits the impressive activity and durability. The present dynamic coordination and structural evolution of (FFV)(2)PdCl2 are also applicable for significantly improving the HER performance of other semiconductors, thus paving a potential way for manufacturing highly efficient and active H-2 production systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bioinspired Z-scheme In2O3/C3N4 heterojunctions with tunable nanorod lengths for enhanced photocatalytic hydrogen evolution
    Long, Zhiyun
    Yang, Xiaohang
    Huo, Xuyang
    Li, Xuanze
    Qi, Qiuju
    Bian, Xingbo
    Wang, Qiyao
    Yang, Fengjian
    Yu, Weilun
    Jiang, Lei
    CHEMICAL ENGINEERING JOURNAL, 2023, 461
  • [2] Fe2O3/C3N4 composite nanotubular photocatalyst with Z-scheme heterojunction
    Liu, Jiaxin
    Liang, Haiou
    Li, Chunping
    Bai, Jie
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2023, 162
  • [3] In situ fabrication of Z-scheme C3N4/Ti3C2/CdS for efficient photocatalytic hydrogen peroxide production
    Cao, Jianrui
    Zhou, Suyu
    Cai, Junhao
    Han, Junhe
    Liu, Junhui
    Li, Ruoping
    Huang, Mingju
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (37) : 25734 - 25745
  • [4] Z-scheme AgSCN/Ag3PO4/C3N4 heterojunction with excellent photocatalytic degradation of ibuprofen
    Zhang, Jian
    Liu, Xin
    Liu, Qianwen
    Licao, Yuqian
    Liu, Guodong
    Shi, Xiaohua
    CERAMICS INTERNATIONAL, 2020, 46 (01) : 106 - 113
  • [5] Construction of a Z-scheme CdIn2S4/ZnS heterojunction for the enhanced photocatalytic hydrogen evolution
    Xie, Linjun
    Liu, Guozhong
    Suo, Rongbo
    Xie, Ziyu
    Liu, Haizhen
    Chen, Jinglin
    Chen, Jing
    Lu, Can-Zhong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 948
  • [6] Embedding Metal in the Interface of a p-n Heterojunction with a Stack Design for Superior Z-Scheme Photocatalytic Hydrogen Evolution
    Yin, Wenjie
    Bai, Lijie
    Zhu, Yuzhen
    Zhong, Shuxian
    Zhao, Leihong
    Li, Zhengquan
    Bai, Song
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) : 23133 - 23142
  • [7] Cd-doped g-C3N4/Ag2S/Ag Z-scheme heterojunction for efficient photocatalytic hydrogen evolution
    Zhang, Hantao
    Liang, Yunxia
    Huang, Yanbing
    Zhang, Jian
    Zhang, Jinshan
    Hu, Bingxing
    Ge, Guixian
    Liu, Jichang
    Bao, Fuxi
    FUEL, 2025, 389
  • [8] Construction of Z-scheme FePSe3/TiO2 heterojunction for enhanced photocatalytic hydrogen evolution
    Zhang, Yue
    Wang, Liwen
    Qin, Shuning
    Zhang, Guanghui
    Wu, Yuhan
    Huang, Wenjuan
    Ma, Liang
    Chen, Xiangbai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [9] Constructing a Z-scheme heterojunction of oxygen-deficient WO3-x and g-C3N4 for superior photocatalytic evolution of H2
    Su, Fengyun
    Tian, Mengzhen
    Cao, Hailong
    Wang, Zhishuai
    Zhao, Qiang
    Xie, Haiquan
    Zhang, Yezhen
    Jin, Xiaoli
    Li, Xin
    Li, Zhengdao
    SURFACES AND INTERFACES, 2024, 55
  • [10] Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting
    Yan, Junqing
    Wu, Huan
    Chen, Hong
    Zhang, Yunxia
    Zhang, Fuxiang
    Liu, Shengzhong Frank
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 191 : 130 - 137