ON COMPETING (p, q )- LAPLACIAN DIRICHLET PROBLEM WITH UNBOUNDED WEIGHT

被引:0
|
作者
Diblik, Josef [1 ]
Galewski, Marek [2 ]
Kossowski, Igor [2 ]
Motreanu, Dumitru [3 ]
机构
[1] Brno Univ Technol, Fac Elect Engn & Commun, Dept Math, Technicka 3058-10, Brno 61600, Czech Republic
[2] Lodz Univ Technol, Inst Math, Al Politechniki 8, PL-93590 Lodz, Poland
[3] Univ Perpignan, Dept Math, F-66860 Perpignan, France
关键词
D O I
10.57262/die038-0102-23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of generalized solutions to coercive competing system driven by the (p, q)-Laplacian with unbounded perturbation corresponding to the leading term in the differential operator and with convection depending on the gradient. Some abstract principle leading to the existence of generalized solutions is also derived based on the Galerkin scheme.
引用
收藏
页码:23 / 42
页数:20
相关论文
共 50 条
  • [31] On a Nonlocal Fractional p(., .)-Laplacian Problem with Competing Nonlinearities
    K. B. Ali
    M. Hsini
    K. Kefi
    N. T. Chung
    Complex Analysis and Operator Theory, 2019, 13 : 1377 - 1399
  • [32] On a Nonlocal Fractional p(.,.)-Laplacian Problem with Competing Nonlinearities
    Ali, K. B.
    Hsini, M.
    Kefi, K.
    Chung, N. T.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1377 - 1399
  • [33] On a perturbed p(x)-Laplacian problem in bounded and unbounded domains
    Cammaroto, F.
    Vilasi, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 71 - 83
  • [34] Existence of non-zero solutions for a Dirichlet problem driven by (p(x),q(x)-Laplacian
    Chinni, A.
    Sciammetta, A.
    Tornatore, E.
    APPLICABLE ANALYSIS, 2022, 101 (15) : 5323 - 5333
  • [35] Existence of solutions for p(x)-Laplacian problem on an unbounded domain
    Fu Yongqiang
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2007, 30 (02) : 235 - 249
  • [36] On the solutions of the (p, q)-Laplacian problem at resonance
    Benouhiba, Nawel
    Belyacine, Zahia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 : 74 - 81
  • [37] On an eigenvalue problem associated with the (p, q) - Laplacian
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 45 - 64
  • [38] On the Brezis–Nirenberg problem for the (p, q)-Laplacian
    Ky Ho
    Kanishka Perera
    Inbo Sim
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 1991 - 2005
  • [39] Hemivariational inequalities governed by the p-Laplacian -: Dirichlet problem
    Naniewicz, Z
    CONTROL AND CYBERNETICS, 2004, 33 (02): : 181 - 210
  • [40] Multiple solutions for a dirichlet problem involving the p-Laplacian
    Cammaroto, F.
    Chinni, A.
    Di Bella, B.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 673 - 679