High-peak-power pulsed operation of 2.0 μm (AlGaln)(AsSb) quantum-well ridge waveguide diode lasers

被引:0
|
作者
Eichhorn, M. [1 ]
Rattunde, M. [2 ]
Schmitz, J. [2 ]
Kaufel, G. [2 ]
Wagner, J. [2 ]
机构
[1] German-French Research Institute of Saint-Louis ISL, 5 R. du Gén. Cassagnou, F-68301 Saint-Louis, France
[2] Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
来源
Journal of Applied Physics | 2006年 / 99卷 / 05期
关键词
We have characterized 2.0 μm (aluminium-gallium-indium)(arsenide-antimonide) quantum-well diode lasers in pulsed operation (20-60 ns). A peak power of 1.25 W could be achieved. The near-field distribution on the output facet and the spectral output have been analyzed. Single transverse mode operation can only be maintained at low pulse currents. Above a certain current limit higher order modes occur and fluctuations between these modes have been resolved on a 10 ns time scale. The threshold for thermal and optical damage was investigated for ridge waveguide widths of 6; 8; and 16 μm. No systematic damage threshold could be determined up to current densities as high as 200 kA/cm2. © 2006 American Institute of Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [21] MBE growth of high-power InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 mu m
    Turner, GW
    Manfra, MJ
    Choi, HK
    Connors, MK
    JOURNAL OF CRYSTAL GROWTH, 1997, 175 : 825 - 832
  • [22] High-Power 1.9-3.3 μm Type-I Quantum-Well Cascade Diode Lasers
    Shterengas, L.
    Hosoda, T.
    Wang, M.
    Feng, T.
    Kipshidze, G.
    Belenky, G.
    NOVEL IN-PLANE SEMICONDUCTOR LASERS XVI, 2017, 10123
  • [23] High-peak-power AlGaInAs quantum-well 1.3-μm laser pumped by a diode-pumped actively Q-switched solid-state laser
    Su, K. W.
    Huang, S. C.
    Li, A.
    Liu, S. C.
    Chen, Y. F.
    Huang, K. F.
    OPTICS LETTERS, 2006, 31 (13) : 2009 - 2011
  • [24] Super high power operation of 0.98 μm InGaAs(P)/InGaP/GaAs broadened waveguide separate confinement heterostructure quantum well diode lasers
    Garbuzov, D
    Maiorov, M
    Khalfin, V
    Harvey, M
    Al-Muhanna, A
    Mawst, L
    Botez, D
    Connolly, J
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VII, 1999, 3625 : 803 - 810
  • [25] A SIMPLE METHOD FOR MEASUREMENT OF WAVELENGTH CHIRPING OF A HIGH-PEAK-POWER LASER DIODE-ARRAY DURING PULSED OPERATION
    NAITO, K
    NISHIDA, Y
    NOSAKA, T
    ISHIKAWA, K
    OHMI, M
    SATO, T
    YAMANAKA, M
    NAKATSUKA, M
    NAKAI, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1993, 32 (1A): : 84 - 87
  • [26] Temperature and injection current dependencies of 2 μm InGaAsSb/AlGaAsSb multiple quantum-well ridge-waveguide lasers
    Lin, C
    Li, AZ
    JOURNAL OF CRYSTAL GROWTH, 2001, 227 : 591 - 594
  • [27] High-peak-power and high-brightness pulsed single and array diode laser sources
    Xiao, Yan
    Olson, Don
    Garrod, Toby J.
    Kanskar, Manoj
    HIGH-POWER DIODE LASER TECHNOLOGY AND APPLICATIONS X, 2012, 8241
  • [28] Optical gain and loss in 3 μm diode "W" quantum-well lasers
    Suchalkin, S
    Westerfeld, D
    Donetski, D
    Luryi, S
    Belenky, G
    Martinelli, R
    Vurgaftman, I
    Meyer, J
    APPLIED PHYSICS LETTERS, 2002, 80 (16) : 2833 - 2835
  • [29] Effect of facet reflectivities on high-power highly strained InGaAs quantum-well diode lasers operating at 1.2 μm
    Panchal, CJ
    Kheraj, VA
    Patel, KM
    Patel, PK
    Arora, BM
    Sharma, TK
    ICO20: Lasers and Laser Technologies, 2005, 6028 : 2805 - 2805
  • [30] Continuous wave operated 3.2 μm type-I quantum-well diode lasers with the quinary waveguide layer
    Belenky, G.
    Shterengas, L.
    Wang, D.
    Kipshidze, G.
    Vorobjev, L.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (11)