Greenhouse gas emission estimation from municipal wastewater using a hybrid approach of generative adversarial network and data-driven modelling

被引:0
|
作者
Asadi, Mohsen [1 ]
McPhedran, Kerry Neil [1 ]
机构
[1] Asadi, Mohsen
[2] McPhedran, Kerry Neil
来源
McPhedran, Kerry Neil (Kerry.mcphedran@usask.ca) | 1600年 / Elsevier B.V.卷 / 800期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Greenhouse gas emission estimation from municipal wastewater using a hybrid approach of generative adversarial network and data-driven modelling
    Asadi, Mohsen
    McPhedran, Kerry Neil
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 800
  • [2] Understanding municipal greenhouse gas emissions: A data-driven approach
    Ahlers, Dirk
    Driscoll, Patrick
    2016 INTERNATIONAL CONFERENCE ON ENGINEERING, TECHNOLOGY AND INNOVATION/IEEE LNTERNATIONAL TECHNOLOGY MANAGEMENT CONFERENCE (ICE/ITMC), 2016,
  • [3] Developing a data-driven technology roadmapping method using generative adversarial network (GAN)
    Kim, Sunhye
    Jang, Hyejin
    Yoon, Byungun
    COMPUTERS IN INDUSTRY, 2023, 145
  • [4] A data-driven event generator for Hadron Colliders using Wasserstein Generative Adversarial Network
    Suyong Choi
    Jae Hoon Lim
    Journal of the Korean Physical Society, 2021, 78 : 482 - 489
  • [5] A data-driven event generator for Hadron Colliders using Wasserstein Generative Adversarial Network
    Choi, Suyong
    Lim, Jae Hoon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 78 (06) : 482 - 489
  • [6] Using a Data-Driven Approach to Unveil Greenhouse Gas Emission Intensities of Different Pulp and Paper Products
    Nabinger, Alec
    Tomberlin, Kristen
    Venditti, Richard
    Yao, Yuan
    26TH CIRP CONFERENCE ON LIFE CYCLE ENGINEERING (LCE), 2019, 80 : 689 - 692
  • [7] A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks
    Teeratorn Kadeethum
    Daniel O’Malley
    Jan Niklas Fuhg
    Youngsoo Choi
    Jonghyun Lee
    Hari S. Viswanathan
    Nikolaos Bouklas
    Nature Computational Science, 2021, 1 : 819 - 829
  • [8] A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks
    Kadeethum, Teeratorn
    O'Malley, Daniel
    Fuhg, Jan Niklas
    Choi, Youngsoo
    Lee, Jonghyun
    Viswanathan, Hari S.
    Bouklas, Nikolaos
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (12): : 819 - 829
  • [9] A Novel Approach for State Estimation Using Generative Adversarial Network
    He, Yi
    Chai, Songjian
    Xu, Zhao
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 2248 - 2253
  • [10] A Hybrid Mechanism- and Data-Driven Soft Sensor Based on the Generative Adversarial Network and Gated Recurrent Unit
    Guo, Runyuan
    Liu, Han
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25901 - 25911