Predicting maritime accident risk using Automated Machine Learning

被引:17
|
作者
Munim, Ziaul Haque [1 ]
Sorli, Michael Andre [1 ]
Kim, Hyungju [2 ]
Alon, Ilan [3 ,4 ]
机构
[1] Univ South Eastern Norway, Fac Technol Nat & Maritime Sci, Campus Vestfold, Horten, Norway
[2] Norwegian Univ Sci & Technol NTNU, Dept Mech & Ind Engn, Trondheim, Norway
[3] Ariel Univ, Dept Econ & Business Adm, Ariel, Israel
[4] Univ Agder, Sch Business & Law, Kristiansand, Norway
关键词
Maritime safety; Maritime accident; Machine learning; Classification tree; Artificial intelligence; MODEL; SEVERITY;
D O I
10.1016/j.ress.2024.110148
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning (ML), particularly, Automated machine learning (AutoML) offers a range of possibilities for analysing large volumes of historical maritime accidents data with advanced algorithms for integrating predictive analytics in operational and policy decision-making for improving maritime safety. This study explores historical data of maritime accidents in Norwegian waters over 40 years. The data has been utilised for analysing five major maritime accident categories: grounding, contact damage, fire or explosion, collision, and heavy weather damage. A total of 29 classification ML algorithms were trained, and the Light Gradient Boosted Trees Classifier was found to be the best-performing with the highest predictive accuracy. The three most impactful factors for accident risk are the category of navigation waters, phase of operation, and gross tonnage of the vessel. Based on the feature effect results, vessels sailing in narrow coastal waters, in the along-the-way operational phase, and fishing vessels are highly vulnerable to grounding relative to other types of accidents. The results can be used as input for the entire procedure of risk analysis, from hazard identification to quantification of accident consequences, and the best-performing ML algorithm can be utilized in developing a decision support system for real-time maritime accident risk assessment.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Analyzing and predicting the risk of death in stroke patients using machine learning
    Zhu, Enzhao
    Chen, Zhihao
    Ai, Pu
    Wang, Jiayi
    Zhu, Min
    Xu, Ziqin
    Liu, Jun
    Ai, Zisheng
    FRONTIERS IN NEUROLOGY, 2023, 14
  • [22] Predicting the risk of diabetic retinopathy using explainable machine learning algorithms
    Islam, Md. Merajul
    Rahman, Md. Jahanur
    Rabby, Md. Symun
    Alam, Md. Jahangir
    Pollob, S. M. Ashikul Islam
    Ahmed, N. A. M. Faisal
    Tawabunnahar, Most.
    Roy, Dulal Chandra
    Shin, Junpil
    Maniruzzaman, Md.
    DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2023, 17 (12)
  • [23] Predicting stroke risk in Chinese hypertensive population using machine learning
    Huang, X.
    Cao, T. Y.
    Wei, Y. P.
    Xu, B.
    Wu, H. Y.
    Wu, Y. Q.
    Cheng, X. S.
    Xu, X. P.
    Liu, L. S.
    EUROPEAN HEART JOURNAL, 2021, 42 : 2489 - 2489
  • [24] Predicting intermediate-risk prostate cancer using machine learning
    Stojadinovic, Miroslav
    Stojadinovic, Milorad
    Jankovic, Slobodan
    INTERNATIONAL UROLOGY AND NEPHROLOGY, 2025,
  • [25] Predicting youth diabetes risk using NHANES data and machine learning
    Vangeepuram, Nita
    Liu, Bian
    Chiu, Po-Hsiang
    Wang, Linhua
    Pandey, Gaurav
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [26] Identification of combined biomarkers for predicting the risk of osteoporosis using machine learning
    Zheng, Zhenlong
    Zhang, Xianglan
    Oh, Bong-Kyeong
    Kim, Ki-Yeol
    AGING-US, 2022, 14 (10): : 4270 - 4280
  • [27] Predicting corporate policies using downside risk: A machine learning approach
    Avramov, Doron
    Li, Minwen
    Wang, Hao
    JOURNAL OF EMPIRICAL FINANCE, 2021, 63 : 1 - 26
  • [28] Predicting youth diabetes risk using NHANES data and machine learning
    Nita Vangeepuram
    Bian Liu
    Po-hsiang Chiu
    Linhua Wang
    Gaurav Pandey
    Scientific Reports, 11
  • [29] Predicting Relative Risk of Antimicrobial Resistance using Machine Learning Methods
    Wu, Ying
    Jiang, Peng
    Goh, Shin Giek
    Yu, Kaifeng
    Chen, Yihan
    He, Yiliang
    Gin, Karina Y. H.
    IFAC PAPERSONLINE, 2022, 55 (10): : 1266 - 1271
  • [30] An Automated Approach for Predicting Road Traffic Accident Severity Using Transformer Learning and Explainable AI Technique
    Aboulola, Omar Ibrahim
    Alabdulqader, Ebtisam Abdullah
    Alarfaj, Aisha Ahmed
    Alsubai, Shtwai
    Kim, Tai-Hoon
    IEEE ACCESS, 2024, 12 : 61062 - 61072