Energy Efficiency Learning Closed-Loop Controls In O-RAN 5G Network

被引:1
|
作者
Ho, Tai Manh [1 ]
Nguyen, Kim-Khoa [1 ]
Cheriet, Mohamed [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Synchromedia Lab, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
5G network; Open Radio Access Network; Closed-Loop Controls; AI/ML Pipeline;
D O I
10.1109/GLOBECOM54140.2023.10437790
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Open Radio Access Network (O-RAN) aims to achieve an open and intelligent RAN architecture that provides greater flexibility, scalability, and network optimization. Machine learning (ML) technologies can play a crucial role in achieving these goals by enabling intelligent decision-making, automated optimization, and proactive maintenance. In this paper, we propose an ML pipeline optimization for energy-efficient deployment of ML-based closed-loop controls (CLC) in 5G O-RAN. Specifically, we propose two ML-based CLCs for resource prediction and network slicing in Non-Realtime RIC and Near-Realtime RIC. We also propose an energy-efficient ML pipeline for dynamically deploying these two CLCs in the O-RAN architecture. Our numerical results demonstrate the effectiveness of our proposed ML pipeline deployment compared to fixed centralized and distributed deployment.
引用
收藏
页码:2748 / 2753
页数:6
相关论文
共 50 条
  • [41] Intelligent zero trust architecture for 5G/6G networks: Principles, challenges, and the role of machine learning in the context of O-RAN
    Ramezanpour, Keyvan
    Jagannath, Jithin
    COMPUTER NETWORKS, 2022, 217
  • [42] O-RAN 5G白盒化小基站硬件架构的研究
    王文兵
    张志民
    通信技术, 2020, 53 (11) : 2847 - 2854
  • [43] An Open, Programmable, Multi-vendor 5G O-RAN Testbed with NVIDIA ARC and OpenAirInterface
    Villa, Davide
    Khan, Imran
    Kaltenberger, Florian
    Hedberg, Nicholas
    da Silva, Ruben Soares
    Kelkar, Anupa
    Dick, Chris
    Basagni, Stefano
    Jornet, Josep M.
    Melodia, Tommaso
    Polese, Michele
    Koutsonikolas, Dimitrios
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS, INFOCOM WKSHPS 2024, 2024,
  • [44] Poster Abstract: O-RAN Signaling Optimizations for Improved IoT Handover Performance in 5G Networks
    Riccio, Eduardo Lichtenfels
    Mangipudi, Pavan Kumar
    McNair, Janise
    PROCEEDINGS 8TH ACM/IEEE CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION, IOTDI 2023, 2023, : 454 - 455
  • [45] Energy-Efficient Integrated O-RAN/PON Access Network
    Valcarenghi, L.
    Marotta, A.
    Centofanti, C.
    Graziosi, F.
    Kondepu, K.
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4967 - 4972
  • [46] Practical Load Balancing Algorithm for 5G Small Cell Networks Based on Real-World 5G Traffic and O-RAN Architecture
    Cho, Young-Jun
    Yoo, Hyeon-Min
    Kim, Kyung-Sook
    Na, Jeehyeon
    Hong, Een-Kee
    IEEE ACCESS, 2024, 12 : 121947 - 121957
  • [47] ORAN-Sense: Localizing Non-cooperative Transmitters with Spectrum Sensing and 5G O-RAN
    Lizarribar, Yago
    Calvo-Palomino, Roberto
    Scalingi, Alessio
    Santaromita, Giuseppe
    Bovet, Gerome
    Giustiniano, Domenico
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2024, : 1870 - 1879
  • [48] 中国联通黄蓉 O-RAN为5G大规模部署探路
    梅雅鑫
    通信世界, 2019, (10) : 38 - 38
  • [49] Energy efficiency and interoperability through O-RAN Rapid Transition Protocol (ORTP)
    Ashfaq, Khuram
    Safdar, Ghazanfar Ali
    COMPUTER NETWORKS, 2024, 252
  • [50] Energy Efficiency in 5G Cellular Network Systems
    Pedram, Massoud
    Wang, Luhao
    IEEE DESIGN & TEST, 2020, 37 (01) : 64 - 78