Keggin-Type Polyoxometalate and Co Nanoparticles Codecorated Separator for High-Performance Lithium-Sulfur Battery

被引:1
|
作者
Sun, Yuxuan [1 ]
Wu, Chenchen [1 ]
Xia, Yuxun [1 ]
Li, Yafeng [1 ,2 ]
Wei, Mingdeng [1 ,2 ]
机构
[1] Fuzhou Univ, Fujian Key Lab Electrochem Energy Storage Mat, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
LI-S; INTERLAYER;
D O I
10.1021/acs.cgd.4c00079
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Li-S battery has garnered widespread attention as an intriguing new energy storage equipment due to its remarkable energy density and low cost. Nevertheless, the infamous shuttle effect seriously hinders the commercialization process. In order to address this issue, this study rationally synthesizes the composites comprising Keggin-type polyoxometalate and Co nanoparticles, which are then coated on a pristine polypropylene separator. The modified separator can greatly inhibit lithium polysulfide shuttling, thereby leading to a greatly improved electrochemical performance. At the first cycle, the fabricated Li-S battery exhibits a specific discharge capacity of 1335.7 mA h g(-1), surpassing the 938.7 mA h g(-1) capacity of an unmodified separator. At a current density of 1C, the initial reversible discharge capacity reaches 988.2 mA h g(-1), and even after 500 cycles, it still retains a remaining capacity of 664.2 mA h g(-1), with a capacity decay rate of 0.066% per cycle. Even at a high sulfur loading of 4.2 mg cm(-2), the device displays a remarkable initial discharge capacity of 1158.2 mA h g(-1), with a remaining capacity of 952.7 mA h g(-1) after 70 cycles (0.1C). This significant performance enhancement could be ascribed to the synergistic effect of PMo12/Co-NCe, which exhibits greatly decreased electron transfer resistance and contact angle to the electrolyte, facilitating the rapid transport of Li-ion and kinetics. Meanwhile, the severe shuttle effect is alleviated effectively by combining the strong catalytic activity of PMo12 and Co nanoparticles with long-chain polysulfides.
引用
收藏
页码:3746 / 3755
页数:10
相关论文
共 50 条
  • [31] Interlayer-expanded MoSe2 nanotubes as multifunctional separator coating for high-performance lithium-sulfur battery
    Yu, Hanzhi
    Zhang, Fujia
    Bao, Shuhong
    You, Yu
    MATERIALS LETTERS, 2023, 331
  • [32] A conductive sulfur-hosting material involving ultrafine vanadium nitride nanoparticles for high-performance lithium-sulfur battery
    Xu, Wencheng
    Pan, Xinxin
    Meng, Xian
    Zhang, Zhonghua
    Peng, Hongrui
    Liu, Jing
    Li, Guicun
    ELECTROCHIMICA ACTA, 2020, 331
  • [33] Lignin Nanoparticle-Coated Celgard Separator for High-Performance Lithium-Sulfur Batteries
    Zhang, Zengyao
    Yi, Shun
    Wei, Yuejia
    Bian, Huiyang
    Wang, Ruibin
    Min, Yonggang
    POLYMERS, 2019, 11 (12)
  • [34] Cerium-Based MOF as a Separator Coating for High-Performance Lithium-Sulfur Batteries
    Su, Yuchen
    Wang, Wensheng
    Wang, Weikun
    Wang, Anbang
    Huang, Yaqin
    Guan, Yuepeng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
  • [35] Boron Nitride Nanotube-Based Separator for High-Performance Lithium-Sulfur Batteries
    Kim, Hong-Sik
    Kang, Hui-Ju
    Lim, Hongjin
    Hwang, Hyun Jin
    Park, Jae-Woo
    Lee, Tae-Gyu
    Cho, Sung Yong
    Jang, Se Gyu
    Jun, Young-Si
    NANOMATERIALS, 2022, 12 (01)
  • [36] Ultrathin titanium carbide-modified separator for high-performance lithium-sulfur batteries
    Nguyen, Dang Le Tri
    Ho, Thi H.
    Nguyen, Tung Manh
    Nguyen, Thao P.
    Doan, Thi Luu Luyen
    Dang, Huyen Tran
    Tran, Minh Xuan
    CERAMICS INTERNATIONAL, 2024, 50 (24) : 54848 - 54855
  • [37] Multifunctional Vanadium Nitride-Modified Separator for High-Performance Lithium-Sulfur Batteries
    Liu, Sen
    Liu, Yang
    Zhang, Xu
    Shen, Maoqiang
    Liu, Xuesen
    Gao, Xinyue
    Hou, Linrui
    Yuan, Changzhou
    NANOMATERIALS, 2024, 14 (08)
  • [38] MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries
    Dou, Hui (dh_msc@nuaa.edu.cn), 1600, Elsevier B.V., Netherlands (352):
  • [39] Defect engineering enables an advanced separator modification for high-performance lithium-sulfur batteries
    Zhou, Jian
    Sun, Siwei
    Zhou, Xinchi
    Rao, Xingyou
    Xu, Xiangyu
    Zhang, Zhen
    Pan, Zhengdao
    Wang, Qin-Chao
    Wang, Zhoulu
    Wu, Yutong
    Wanger, Wayko D.
    Guo, Xiaobei
    Liu, Xiang
    Wang, Chao
    Lu, Chunhua
    Zhang, Yi
    CHEMICAL ENGINEERING JOURNAL, 2024, 487
  • [40] Clarifying the Role of Ordered Mesoporous Carbon on a Separator for High-Performance Lithium-Sulfur Batteries
    Kwon, Yelim
    Choi, Yun Seok
    Wang, Qian
    Song, Lianghao
    Kim, Hansol
    Bulakhe, Ravindra N.
    Kim, Ji Man
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (19) : 9975 - 9984