Quantum cascade lasers (QCL) for active hyperspectral imaging

被引:10
|
作者
Yang, Quankui [1 ]
Fuchs, Frank [1 ]
Wagner, Joachim [1 ]
机构
[1] Fraunhofer Inst Appl Solid State Phys, Tullastr 72, D-79108 Freiburg, Germany
关键词
active hyperspectral imaging; quantum cascade lasers;
D O I
10.1515/aot-2014-0006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
There is an increasing demand for wavelength agile laser sources covering the mid-infrared (MIR, -3.5-12 mu m) wavelength range, among others in active imaging. The MIR range comprises a particularly interesting part of the electromagnetic spectrum for active hyperspectral imaging applications, due to the fact that the characteristic 'fingerprint' absorption spectra of many chemical compounds lie in that range. Conventional semiconductor diode laser technology runs out of steam at such long wavelengths. For many applications, MIR coherent light sources based on solid state lasers in combination with optical parametric oscillators are too complex and thus bulky and expensive. In contrast, quantum cascade lasers (QCLs) constitute a class of very compact and robust semiconductor-based lasers, which are able to cover the mentioned wavelength range using the same semiconductor material system. In this tutorial, a brief review will be given on the state-of-the-art of QCL technology. Special emphasis will be addressed on QCL variants with well-defined spectral properties and spectral tunability. As an example for the use of wavelength agile QCL for active hyperspectral imaging, stand-off detection of explosives based on imaging backscattering laser spectroscopy will be discussed.
引用
收藏
页码:141 / 150
页数:10
相关论文
共 50 条
  • [31] Standoff Imaging of Trace RDX Using Quantum Cascade Lasers
    Datskos, Panos G.
    Morales-Rodriguez, Marissa E.
    Senesac, Larry R.
    IEEE SENSORS JOURNAL, 2020, 20 (01) : 149 - 154
  • [32] Standoff hyperspectral imaging of chemical threats using QCL arrays
    Witinski, Mark F.
    Pein, Brandt
    Blanchard, Romain
    Ulu, Gokhan
    Vander Rhodes, Greg
    Krishnamurthy, Kalyani
    Howle, Chris R.
    Lee, Linda
    Clewes, Rhea J.
    Conner, Siobhan M.
    Vakhshoori, Daryoosh
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XX, 2019, 11010
  • [33] Quantum cascade laser-based hyperspectral imaging of biological tissue
    Kroeger, Niels
    Egl, Alexander
    Engel, Maria
    Gretz, Norbert
    Haase, Katharina
    Herpich, Iris
    Kraenzlin, Bettina
    Neudecker, Sabine
    Pucci, Annemarie
    Schoenhals, Arthur
    Vogt, Jochen
    Petrich, Wolfgang
    JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (11)
  • [34] Tunable External Cavity Quantum Cascade Lasers (EC-QCL): an Application Field for MOEMS Based Scanning Gratings
    Grahmann, Jan
    Merten, Andre
    Ostendorf, Ralf
    Fontenot, Michael
    Bleh, Daniela
    Schenk, Harald
    Wagner, Hans-joachim
    MOEMS AND MINIATURIZED SYSTEMS XIII, 2014, 8977
  • [35] THz Quantum Cascade Lasers with low effective mass active region
    Brandstetter, M.
    Krall, M.
    Kainz, M.
    Schoenhuber, S.
    Deutsch, C.
    Zederbauer, T.
    Andrews, A. M.
    Strasser, G.
    Unterrainer, K.
    2016 IEEE PHOTONICS CONFERENCE (IPC), 2016, : 70 - 71
  • [36] Active mode locking of quantum cascade lasers in an external ring cavity
    Revin, D. G.
    Hemingway, M.
    Wang, Y.
    Cockburn, J. W.
    Belyanin, A.
    NATURE COMMUNICATIONS, 2016, 7
  • [37] Strained Active Regions in GaAs-based Quantum Cascade Lasers
    Triplett, Gregory
    Roberts, Denzil
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2010, 46 (12) : 1782 - 1787
  • [38] Active region temperatures of quantum cascade lasers during pulsed excitation
    Tober, Richard L.
    JOURNAL OF APPLIED PHYSICS, 2007, 101 (04)
  • [39] Active and Passive Frequency Comb Generation in Terahertz Quantum Cascade Lasers
    Li, Hua
    Cao, J. C.
    2018 43RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2018,
  • [40] Active mode locking of quantum cascade lasers in an external ring cavity
    D. G. Revin
    M. Hemingway
    Y. Wang
    J. W. Cockburn
    A. Belyanin
    Nature Communications, 7